Combinatorial reciprocity for non-intersecting paths

> Special Session on Enumerative Combinatorics, AMS Fall Central Sectional Meeting, Creighton University, Omaha, NE

Sam Hopkins (Howard University) based on joint work with Gjergji Zaimi

October 7th, 2023

Combinatorial reciprocity

A combinatorial reciprocity theorem asserts $f(-n)= \pm g(n)$, where $f(n)$ and $g(n)$ are two related counting functions. It's a "hidden duality." For example, the most basic combinatorial reciprocity theorem is

$$
\binom{-n}{k}=-1^{k}\left(\binom{n}{k}\right)
$$

where $\binom{n}{k}$ of course counts the number of k-subsets of $[n]=\{1,2, \ldots, n\}$, and $\binom{n}{k}$) counts the number of k-multisets on $[n]$. In order to make sense of $\binom{-n}{k}$, we observe that

$$
\binom{n}{k}=\frac{n(n-1) \cdots(n-(k-1))}{k!}
$$

is a polynomial in n, which can then be evaluated at negative numbers.

Combinatorial reciprocity for polynomials

There are many combinatorial reciprocity theorems for polynomial counting functions, including:

- for the order polynomial $\Omega_{P}(n)$ of a poset P;
- for the chromatic polynomial $\chi_{G}(n)$ of a graph G;
- for the Ehrhart polynomial $L_{\mathcal{P}}(n)$ of a lattice polytope \mathcal{P}.

Combinatorial reciprocity beyond polynomials

But sometimes we can make sense of $f(-n)$, and prove combinatorial reciprocity theorems, for counting functions $f(n)$ that are not polynomials.

We say that $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfies a linear recurrence if there are $d \geq 0$ and $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}\left(\right.$ with $\left.\alpha_{d} \neq 0\right)$ for which

$$
f(n+d)+\alpha_{1} f(n+d-1)+\alpha_{2} f(n+d-2)+\cdots+\alpha_{d} f(n)=0
$$

for $n \geq 0$. E.g.: polynomials, quasi-polynomials, exponential functions. For such an f, we define $f(-n)$ by "running the recurrence backwards." That is, we set

$$
f(-n)=\frac{-1}{\alpha_{d}}\left(f(-n+d)+\alpha_{1} f(-n+d-1)+\cdots+\alpha_{d-1} f(-n+1)\right)
$$

for $n \geq 1$.

Bounded Dyck paths

Recall that a Dyck path is a lattice path in \mathbb{Z}^{2} from $(0,0)$ to $(2 n, 0)$, whose steps are $(1,1)$ or $(1,-1)$, and which never goes below the x-axis. We say a Dyck path is r-bounded if it never goes above the line $y=r$.

Example

Let $f(n)$ be the number of 3-bounded Dyck paths of length $2 n$.
Exercise: Show $f(n)=F_{2 n-1}$, where F_{n} are the Fibonacci (or Pingala) numbers defined by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n>2$.
Therefore, $f(n)=\frac{1}{\sqrt{5}}\left(\varphi^{2 n-1}+\varphi^{-2 n+1}\right)$, and thus $f(-n)=f(n+1)$.

Reciprocity for fans of bounded Dyck paths

For two Dyck paths D and D^{\prime}, we write $D \leq D^{\prime}$ if D is weakly below D^{\prime}. An m-fan of Dyck paths is a tuple $D_{1} \leq \cdots \leq D_{m}$ of nested Dyck paths.

Let $d(m, k ; n)=\# m$-fans of $(2 k+1)$-bounded Dyck paths of length $2 n$.

Theorem (Cigler-Krattenthaler, 2020)

$d(m, k ; n)$ satisfies a linear recurrence, and $d(m, k ;-n)=d(k, m ; n+1)$.
See also follow up work of Jang-Kim-Kim-Song-Song, 2022 on reciprocity for other kinds of bounded lattice paths (Motzkin, Schröder, et cetera).

Acyclic planar networks

An acyclic planar network is an acyclic directed graph $G=(V, E)$ embedded in a disk, with boundary vertices s_{1}, \ldots, s_{m} (sources) and t_{m}, \ldots, t_{1} (sinks) in clockwise order, and with edge weights $w: E \rightarrow \mathbb{C}$.
We write $\pi: s_{i} \rightarrow t_{j}$ to mean π is a path in G connecting s_{i} to t_{j}, and we write $\Pi=\left(\pi_{1}, \ldots, \pi_{k}\right):\left(s_{i_{1}}, \ldots, s_{i_{k}}\right) \rightarrow\left(t_{j_{1}}, \ldots, t_{j_{k}}\right)$ to mean Π is a tuple of paths $\pi_{\ell}: s_{i_{\ell}} \rightarrow t_{j_{\ell}}$. The tuple Π is non-intersecting if no two of its paths share any vertices. We set $w(\pi)=\prod_{e \in \pi} w(e)$ and $w(\Pi)=\prod_{\pi \in \Pi} w(\pi)$.

The above non-intersecting tuple $\Pi:\left(s_{1}, s_{3}\right) \rightarrow\left(t_{2}, t_{3}\right)$ has $w(\Pi)=x$, because by convention edges without labels have weight one.

Reciprocity for non-intersecting paths

Let G be an acyclic planar network for which there is a unique, weight one non-intersecting tuple of paths connecting all the sinks to all the sources. Let G^{n} denote n copies of G glued together like this (red lines = identify):

For $I=\left\{i_{1}<\cdots<i_{k}\right\}, J=\left\{j_{1}<\cdots<j_{k}\right\} \subseteq[m]$ let $f(I, J ; n)=\sum w(\Pi)$ a sum over non-intersecting tuples $\Pi:\left(s_{i_{1}}, \ldots, s_{i_{k}}\right) \rightarrow\left(t_{j_{1}}, \ldots, t_{j_{k}}\right)$ in G^{n}.

Theorem (H.-Zaimi, 2023)

$f(I, J ; n)$ satisfies a linear recurrence. $f(I, J ;-n)=-1^{\sigma(I)+\sigma(J)} f\left(I^{c}, J^{c} ; n\right)$ where for $K \subseteq[m]$ we use $\sigma(K)=\sum_{i \in K} i$ and $K^{c}=[m] \backslash K$.

Proof ingredients I: LGV lemma

Unsurprisingly, the LGV lemma is a major ingredient in our proof. For network G, let $\mathrm{P}_{G}=\left(p_{i, j}\right)$ be path matrix of $G: p_{i, j}=\sum_{\pi: s_{i} \rightarrow t_{j}} w(\pi)$. For an $m \times m$ matrix M and k-subsets $I, J \subseteq[m]$, let $M[I, J]$ denote the $k \times k$ submatrix of M with column indices in I and row indices in J.

Lemma (Lindström-Gessel-Viennot)

For $I=\left\{i_{1}<\cdots<i_{k}\right\}, J=\left\{j_{1}<\cdots<j_{k}\right\} \subseteq[m]$,

$$
\operatorname{det}\left(\mathrm{P}_{G}[I, J]\right)=\sum w(\Pi)
$$

a sum over non-intersecting tuples $\Pi:\left(s_{i_{1}}, \ldots, s_{i_{k}}\right) \rightarrow\left(t_{j_{1}}, \ldots, t_{j_{k}}\right)$ in G.

Proof ingredients II: compound and adjugate matrices

The other ingredient in our proof is a result from elementary linear algebra. For an $m \times m$ matrix M, let $\operatorname{com}_{k}(M)$ and $\operatorname{adj}_{k}(M)$ be the k th compound and adjugate matrices of M. These are $\binom{m}{k} \times\binom{ m}{k}$ matrices whose rows \& columns are indexed by k-subsets $I, J \subseteq[m]$. Specifically, the entries are:

$$
\operatorname{com}_{k}(\mathrm{M})_{I, J}=\operatorname{det}(\mathrm{M}[I, J]) \text { and } \operatorname{adj}_{k}(\mathrm{M})_{I, J}=-1^{\sigma(I)+\sigma(J)} \operatorname{det}\left(\mathrm{M}\left[I^{c}, J^{c}\right]\right)
$$

Lemma (Generalized cofactor expansion of determinant)

For any $0 \leq k \leq m$,

$$
\operatorname{com}_{k}(M) \times \operatorname{adj}_{k}(M)=\operatorname{adj}_{k}(M) \times \operatorname{com}_{k}(M)=\operatorname{det}(M) \cdot I
$$

where I is the $\binom{m}{k} \times\binom{ m}{k}$ identity matrix.

Recovering reciprocity for fans of bounded Dyck paths

To recover the fans of bounded Dyck paths reciprocity from our result, we use this network G :

It's easy to see that non-intersecting tuples of paths in G^{n} correspond to fans of bounded Dyck paths.

Another important network: Schur polynomials

Consider the following network G :

For appropriate I, J depending on λ and μ, non-intersecting tuples in G correspond to SSYT of shape λ / μ.

Thus, the Schur polynomial $s_{\lambda / \mu}\left(z_{1}, \ldots, z_{n}\right)$ is the generating function of these non-intersecting tuples.

Reciprocity for Schur functions with repeated entries

What does our reciprocity result say for this Schur polynomial network G ? Fix $\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$. Let $\mathbf{z}^{n}=\left(z_{1}, \ldots, z_{k}, z_{1}, \ldots, z_{k}, \ldots, z_{1}, \ldots, z_{k}\right)$, with each value repeated n times. Then, our result yields the following:

Theorem

$s_{\lambda / \mu}\left(\mathbf{z}^{n}\right)$ satisfies a linear recurrence, and $s_{\lambda / \mu}\left(\mathbf{z}^{-n}\right)=-1^{|\lambda / \mu|} s_{\lambda^{t} / \mu^{t}}\left(\mathbf{z}^{n}\right)$.
More generally, for any homogeneous symmetric function f of degree m, we have that $f\left(\mathbf{z}^{n}\right)$ is a polynomial in n and $f\left(\mathbf{z}^{-n}\right)=-1^{m} \omega f\left(\mathbf{z}^{n}\right)$, where $\omega: \Lambda \rightarrow \Lambda$ is the canonical involution on the ring of symmetric functions Λ. (This will appear as an exercise in the new edition of Stanley's EC2.) Extends to quasi-symmetric functions, combinatorial Hopf algebras, etc.

How this project happened: MathOverflow

mathoverflow

- MO:372642
- MO:372811
- MO:373030
- MO:430249
J. Cigler asked a series of questions on MathOverflow about bounded Dyck paths of "negative length." These attracted comments and answers, including from R. Stanley. Subsequently, J. Cigler and
C. Krattenthaler wrote their paper.

I noticed the non-intersecting paths interpretation of Cigler's inquiries, and asked a follow-up MO question. G. Zaimi answered, explaining the argument with compound and adjugate matrices. I later asked an MO question about the symmetric function reciprocity, and again R. Stanley and G. Zaimi provided interesting answers. Then, G. Zaimi and I wrote our joint paper.

Open problems

- Find more interesting networks to which we can apply the non-intersecting paths reciprocity theorem. For example, can we recover the Motzkin, Schröder, ... reciprocity of Jang et al. this way?
- In an unpublished manuscript from when he was an undergraduate, D. Speyer proved a combinatorial reciprocity theorem for counting perfect matchings in a linearly growing sequence of graphs:
http://www-personal.umich.edu/~speyer/TransferMatrices.pdf
Generalizes an earlier reciprocity result of J. Propp for domino tilings. Is there a connection to the non-intersecting paths reciprocity?
- Find a bijective proof of the relationship between compound and adjugate matrices, even in the special case of a path matrix P_{G}.

Thank you!

these slides are on my website:
https://www.samuelfhopkins.com/docs/reciprocity_talk.pdf and the relevant papers are:

- J. Cigler and C. Krattenthaler. "Bounded Dyck paths, bounded alternating sequences, orthogonal polynomials, and reciprocity." Forthcoming, European J. Combin., 2024. arXiv:2012.03878
- S. Hopkins, G. Zaimi. "Combinatorial reciprocity for non-intersecting paths." Enumer. Comb. Appl. 3, no. 2, 2023. arXiv:2301. 00405
- J. Jang, D. Kim, J. S. Kim, M. Song, and U.-K. Song. "Negative moments of orthogonal polynomials." Forum Math. Sigma 11, 2023. arXiv:2201.11344

