Math 157 - Calculus II Final Exam - Spring 2024

April 30, 2024

SHOW ALL WORK. Justify your answers! Simplify your answers. Give step-by-step explanations to get credit for answers. Give EXACT answers whenever possible.

Solve all parts of any 10 out of the 15 problems below. Each of the 15 problems $=20$ points. Exam total $=200$ points.

1. (a) Find the area bounded by the curves $y=x^{2}-1$ and $y=2 x+7$.
(b) Find the average value $f_{\text {avg }}$ of $f(x)=\frac{1}{x^{2}}$ on the interval $[1,3]$ and c in the given interval such that $f_{\text {avg }}=f(c)$.
2. Let R be the region in the first quadrant below the curve $y=\sqrt{x}$ from $x=1$ to $x=2$. Compute the volume of the solid obtained by rotating R :
(a) about the x-axis;
(b) about the y-axis.
3. Evaluate the integrals:
(a) $\int_{0}^{2 \pi} x^{2} \sin (2 x) d x$;
(b) $\int e^{3 x} \cos x d x$.
4. Determine whether the integral is convergent or divergent. Evaluate the integrals that are convergent.
(a) $\int_{1}^{\infty} \frac{x}{e^{2 x}} d x$;
(b) $\int_{3}^{\infty} \frac{1}{(x-2)^{3 / 2}} d x$.
5. Evaluate the integrals:
(a) $\int \sec x \tan ^{3} x d x$;
(b) $\int \sin ^{2} x \cos ^{3} x d x$.
6. Evaluate the integrals:
(a) $\int \frac{1}{\left(x^{2}+9\right)^{3 / 2}} d x$;
(b) $\int \frac{2 x+3}{x^{2}-4} d x$.
7. (a) Write the partial fractions decomposition of $\frac{10}{(x-1)\left(x^{2}+9\right)}$.
(b) Evaluate the integral $\int \frac{10}{(x-1)\left(x^{2}+9\right)} d x$.
(continued on the next page)

(continued from the previous page)

8. (a) Find an equation of the line tangent to the curve given by $x=2+\ln t, y=t^{2}-3$ at the point $(2,-2)$.
(b) Find the length of the curve defined by $x=-\sin ^{3} t, y=-\cos ^{3} t$ over the interval $0 \leq t \leq \frac{\pi}{2}$.
9. Compute the surface area of the surface obtained by rotating the curve given by $y=x^{3}$ from $x=0$ to $x=1$ about the x-axis.
10. Determine whether each of the following series converges conditionally, converges absolutely, or diverges. Remember to justify your answers.
(a) $\sum_{n=1}^{\infty} \frac{2^{n} n^{3}}{n!}$;
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$;
(b) $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n-2}{3 n^{2}+5 n+1}$;
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \arctan n}{n^{2}}$.
11. (a) Graph the curve $r=2(1+\cos \theta)$.
(b) Find the area of the region in the plane enclosed by the curve $r=2(1+\cos \theta)$.
12. Find the interval and radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$.
13. A spring has a natural length of 40 cm . If a 60 N force is needed to keep the spring compressed 10 cm ,
(a) how much work is done during this compression?
(b) how much work is required to compress the spring to a length of 25 cm ?

Hint: Recall that Hooke's Law says that the force needed to keep a spring compressed a distance x beyond its natural length is $k x$, where k is the spring constant of the spring.
14. Consider the function $f(x)=\sin (x)$.
(a) Write the degree three Taylor polynomial $T_{3}(x)$, centered at $x=0$, for this $f(x)$.
(b) Use your answer in part (a) to give an estimate for the value of $f(-1)$.
(c) Give an upper bound on the error for your estimate from part (b). Hint: Recall that the Taylor series for $\sin x$ at $x=0$ is alternating.
15. (a) Approximate $\int_{-2}^{4}(x+1)^{2} d x$ by using the midpoint rule with $n=3$ subintervals.
(b) What is the error of your approximation compared to the true value of this definite integral?

