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Abstract. We present a framework for finding and proving interesting combi-
natorial formulas. The combinatorics parametrizes a decomposition of certain
braid varieties over finite fields, while the proofs relate the point counts of
these varieties to traces in Hecke algebras. We discuss several case-studies and
open problems using this framework.

1. Introduction

1.1. Overview. We present a framework for finding and proving interesting
combinatorial formulas using braid varieties. This framework is not new [14]—we
learned about it from Galashin and Lam’s work [18, 19]—but its application to
algebraic combinatorics is new, and has already proven successful in producing new
results: recent joint work with Galashin, Lam, and Trinh resolved two decades-long
open problems in Coxeter–Catalan combinatorics [20].

The framework is based on two objects giving the same q-polynomial:
• the number of points in a braid variety over a finite field Fq (Definition 2.1);

and
• a trace of certain braids in a suitable Hecke algebra (Theorem 3.3).

The first item produces combinatorial objects via the Deodhar decomposition
and specializing q to 1 (Section 3.1); the second item allows the use of representation-
theoretic techniques for proving enumerative formulas (Section 3.2). At different
levels of generality, different techniques become available.

1.2. Summary. In Section 2, we introduce braid varieties, which form the
algebraic and geometric background of the framework. In Section 3, we show how
to extract combinatorial objects and enumerative formulas from braid varieties.

For finite Weyl and Coxeter groups (Section 4), it is possible to compute every-
thing in a case-by-case manner using an explicit decomposition of the Hecke algebra
(Equation (4.1)), and there are many interesting combinatorial and representation-
theoretic problems that should be easily resolved using these case-by-case meth-
ods. Special classes of elements in finite type (periodic elements) have favor-
able representation-theoretic properties that allow for uniform approaches using
Lusztig’s exotic Fourier transform, Springer theory, and graded modules of rational
Cherednik algebras (Section 4.5). A special case has already led to the solution to
two long-standing open problems in Coxeter–Catalan combinatorics in [20] (Theo-
rem 4.2).
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For affine Weyl groups (Section 5), the main tool available is Opdam’s trace
formula for translation elements [35] (Theorem 5.2). In this setting, the pro-
posed framework recovers some Tesler matrix identities due to Haglund [24] (The-
orem 5.6)—and we compile several other interesting conjectures of intermediate
difficulty (Section 5). Some of these conjectures can be attacked with Opdam’s
trace formula, while others will require further tools.

For general Weyl groups of Kac–Moody groups (Section 6), we have only rather
generic recursive and cluster-theoretic methods. These techniques are not as easy
to apply as the specialized trace formulas above, but have the advantage that they
provide a tool for studying braid varieties over C, with the aim of computing mixed
Hodge decompositions and providing a link to q, t-combinatorics (Section 7).

2. Braid Varieties and the Deodhar Decomposition

We first describe the algebraic part of the framework.

2.1. Braid varieties. Let G be a connected Kac-Moody group split over an
algebraically closed field F. Fix a pair of opposed F-split Borel subgroups B+, B−.
Let T := B+ ∩B− be a split maximal torus of G, and write W := NG(T )/T for the
Weyl group. The flag variety of G is the collection of Borel subgroups B := G/B+.
G acts on the flag variety by conjugation—if g ∈ G and B ∈ B, then g ·B := gBg−1.

We write w ·B+ := ẇ ·B+, where ẇ ∈ G is any lift of w ∈W to NG(T ). For any
two Borels B1, B2 ∈ B, there is a unique w such that (B1, B2) = (g · B+, gw · B+)

for some g ∈ G. In this case, we write B1
w−→ B2 and say that (B1, B2) are in

relative position w.

Definition 2.1. Let w = (s1, s2, . . . , sm) be a word in the simple reflections S
of length m, and fix u ∈W . Define the corresponding braid variety by

R(v)
u,w(F) :=

{
(vB+ = B0

s1−→ B1
s2−→ · · · sm−−→ Bm

vuw◦←−−− B−) | Bi ∈ B for all i
}
.

For v = e, we write Ru,w(F) := R
(v)
u,w(F). When w is the reduced word of an

element w ∈W , we have the special cases that:
• Re,w(F) is isomorphic to the Schubert cell B+ẇB+/B+, and
• Ru,w(F) recovers the open Richardson variety, defined as the intersection

of a Schubert and opposite Schubert cells (B+ẇB+/B+) ∩ (B−u̇B+/B+).
It is natural to view the word w as an element of the braid group, as there are
isomorphisms between R(v)

u,w(F) and R(v)
u,w′(F) when w and w′ are related by braid

moves.

2.2. Distinguished subwords and the Deodhar decomposition. The
variety R

(v)
u,w decomposes in understandable pieces using Deodhar’s distinguished

subwords, as we now explain; we closely follow our exposition from [20].
Let (W,S) be a Coxeter system with simple reflection S and rank r. The

reflections T of W are the conjugates of the simple reflections. For w ∈ W , the
length (resp. absolute length) `(w) (resp. `T (w)) of w is the smallest integer m ≥ 0
such that w can be expressed as a product ofm simple reflections (resp. reflections).
For w ∈W and s ∈ S, we write ws < w if `(ws) < `(w) and ws > w if `(ws) > `(w).
The weak order on W is the partial order formed by the transitive closure of these
relations.
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A subword of w = (s1, s2, . . . , sm) is a sequence u = (u1, u2, . . . , um) in which
ui ∈ {si, e} for all i. For any such sequence, we set u(i) = u1u2 · · ·ui ∈ W . If
u(m) = u, then we refer to u as a u-subword of w.

Definition 2.2 ([14, 32]). For u ∈W , a u-subword u of w is v-distinguished if
vu(i) ≤ vu(i−1)si for all i. We write D(v)

u,w for the set of v-distinguished u-subwords
of w (and set Du,w = D(e)

u,w). We define

eu := |{i ∈ [m] | vui = e}|,
du := |{i ∈ [m] | vu(i) < vu(i−1)}|, and
k := min

u∈D(v)
u,w

eu .

We write M(v)
u,w := {u ∈ D(v)

u,w | eu = k} for the set of maximal v-distinguished
u-subwords (and setMu,w :=M(e)

u,w).

We now explain some combinatorial facts from [20]. When u = e, the minimal
value k is given by `T (w) [20, Proposition 4.8]. For any u, there is a characterization
of distinguished subwords using colored reflection—that is, a pair (t, l) ∈ T × Z≥0.
Given a subword u = (u1, u2, · · · , um) of a word w = (s1, s2, . . . , sm) and an index
j ∈ [m], we define the colored reflection

tj(u) := (s
u(j)

j , lj), where lj :=
∣∣{1 ≤ i < j | su(i)

i = s
u(j)

j and ui 6= e
}∣∣ .

We use l dots above a reflection to describe the integer l, and if t is a colored
reflection we write t for the corresponding uncolored reflection.

Definition 2.3 ([20, Definition 4.3]). If w = (s1, s2, . . . , sm) is a word and u
is a subword of w, then we set

inv(u) := (t1(u), t2(u), . . . , tm(u)) .

We write inve(u) for the subsequence of inv(u) obtained by restricting to the indices
j for which uj = e.

Proposition 2.4 ([20, Propositions 4.4 and 4.7]). A subword u of a word
w is distinguished if and only if each colored reflection in inve(u) has even color.
Furthermore,

∏
t∈inve(u) t = wu−1.

Theorem 2.5 ([14, 32, 43]). Let W be a Weyl group. For a u-subword u of
w = (s1, s2, . . . , sm) we let

R(v)
u,w(F) :=

{
(vB+ = B0

s1−→ B1
s2−→ · · · sm−−→ Bm

vuw◦←−−− B−) | B−
vu(i)w◦−−−−−→ Bi

}
.

Then we have the Deodhar decomposition

(2.1) R(v)
u,w(F) =

⊔
u∈D(v)

u,w

R(v)
u,w(F) with R(v)

u,w(F) ' (F∗)eu × Fdu .

Example 2.6. LetW = S2 = {e, s}. ThenDe,(s,s,s) = {(e, e, e), (e, s, s), (s, s, e)}
and we find that∑

u∈De,(s,s,s)

(q − 1)euqdu = (q − 1)3 + 2(q − 1)q = (q − 1)(q2 + 1).
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3. Combinatorial Objects and Formulas

Using the Deodhar decomposition of braid varieties over finite fields, we identify
maximal distinguished subwords as the combinatorial objects in our framework. We
then describe the number of points of a braid variety over a finite field as a trace
in the corresponding Hecke algebra HW .

3.1. Combinatorial objects. Suppose that F = Fq is a finite field with q
elements, where q is a prime power. Then we have∣∣∣R(v)

u,w(Fq)
∣∣∣ =

∑
u∈D(v)

u,w

(q − 1)euqdu .

By definition of k andM(v)
u,w (see Definition 2.2), we conclude that

lim
q→1

1

(q − 1)k

∣∣∣R(v)
u,w(Fq)

∣∣∣ =
∣∣∣M(v)

u,w

∣∣∣ .(3.1)

Thus, any technique for computing
∣∣∣R(v)

u,w(Fq)
∣∣∣ gives a formula for the combi-

natorial setM(v)
u,w of maximal distinguished subwords—in certain settings, we will

even be able to identifyM(v)
u,w with existing combinatorial objects. Such identifica-

tions are desirable, but can often be difficult to find.

Problem 3.1. Suppose 1
(q−1)k

∣∣∣R(v)
u,w(Fq)

∣∣∣ has nonnegative coefficients.

• Relate the maximal distinguished subwordsM(v)
u,w to existing combinatorial

objects.
• Find a combinatorial statistic stat onM(v)

u,w so that
1

(q − 1)k

∣∣∣R(v)
u,w(Fq)

∣∣∣ =
∑

u∈M(v)
u,w

qstat(u).

Example 3.2. Continuing Example 2.6, we haveMe,(s,s,s) = {(e, s, s), (s, s, e)}.
Problem 3.1 asks for a way to assign a statistic so that

1

(q − 1)k

∣∣∣R(v)
u,w(Fq)

∣∣∣ = 1 + q2 = qstat(e,s,s) + qstat(s,s,e) =
∑

u∈Me,(s,s,s)

qstat(u).

3.2. Formulas. Every braid w in the simple reflections of W gives rise to a
corresponding element Tw of the Hecke algebra, and it turns out that the point
count R(v)

u,w(Fq) can be expressed in terms of Tw.
The Hecke algebra of (W,S) is the Z[q±1]-algebra HW freely generated by sym-

bols Tw for w ∈W , modulo the relations

TwTs =

{
qTws + (q − 1)Tw if ws < w,

Tws if ws > w,

for all w ∈ W and s ∈ S. For any word w = (s1, s2, . . . , sm), we set Tw :=
Ts1Ts2 · · ·Tsm .

We write τ : HW → A for the trace defined linearly by:

τ(T−1
w ) :=

{
1 w = e,

0 w 6= e
for w ∈W .
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Theorem 3.3 ([20, Corollary 5.3]). For any word w and u, v ∈W , we have∣∣∣R(v)
u,w(Fq)

∣∣∣ = q`(v)τ(T−1
v−1TwT

−1
vu ).

4. Techniques, Examples, and Problems in Finite Coxeter Groups

In this section we describe some techniques and problems in the setting of finite
reflection groups.

4.1. Technique: traces and Schur elements. Let W be a finite Coxeter
group and Irr(W ) be the set of its irreducible characters. The Hecke algebra HW
decomposes similarly to the group algebra of W , with certain weights called Schur
elements sτ (χq):

τ =
∑

χ∈Irr(W )

1

sτ (χq)
χq.(4.1)

This decomposition of HW , along with explicit identifications of the Schur ele-
ments gives a general technique for computing

∣∣∣R(v)
u,w(Fq)

∣∣∣ in a case-by-case manner
for any finite Coxeter group by taking a sum over irreducible characters. Further-
more, when taking a union of braid varieties R(v)

e,w over all elements v ∈W , we have
the following dramatic simplification of Theorem 3.3.

Theorem 4.1 ([20, Section 6.6]). For W finite,∑
v∈W

∣∣∣R(v)
e,w(Fq)

∣∣∣ =
∑

χ∈Irr(W )

dim(χ) · χq(Tw).

There are many interesting examples using these two techniques, as we now
discuss.

4.2. Example: Galashin and Lam Positroid Catalan Combinatorics.
In [18, 19], Galashin and Lam apply this framework in the context of type A
rational Catalan combinatorics. We refer the reader to their excellent papers for a
full description of their results and open problems.

4.3. Example: Rational Noncrossing Coxeter–Catalan Combinatorics.
In [20], we solved two long-standing open problems in Coxeter–Catalan combina-
torics using this framework. (There are still many open combinatorial problems
stemming from this work.) For any positive integer p coprime to h, we set

(4.2) Catp(W ; q) :=

r∏
i=1

[p+ (pei modh)]

[di]
,

where d1 ≤ d2 ≤ · · · ≤ dr are the degrees of W , ei = di − 1 are the exponents, h
is the Coxeter number, and where 0 ≤ (pei modh) < h is the integer in that range
congruent to pei modulo h. (For well-generated finite complex reflection groups,
Catp(W ; q) is the graded character of the finite-dimensional irreducible representa-
tion eLp/h(triv) of the rational Cherednik algebra at the parameter p/h). We write
Cat(W ) := Cath+1(W ; 1), which was previously known case-by-case to enumerate
the noncrossing partitions. Two long-standing open problems in Coxeter–Catalan
combinatorics were:

• uniformly prove that noncrossing objects are enumerated by Cat(W ).
• uniformly construct rational noncrossing objects enumerated by Catp(W ; 1).



6 N. WILLIAMS

Our framework recently led to a solution to both of these problems in [20],
along with their parking analogues.

Theorem 4.2 ([20]). For any (finite) Weyl group W of rank r and Coxeter
number h, Coxeter word c, and integer p coprime to h, we have

|Re,cp(Fq)| = (q − 1)rCatp(W ; q) and
∑
v∈W

∣∣∣R(v)
e,cp(Fq)

∣∣∣ = (q − 1)r[p]r.

Sending q → 1, we conclude that for any (irreducible, finite) Coxeter group W
of rank r and Coxeter number h, Coxeter word c, and (positive) integer p coprime to
h, we have |Me,cp(W )| = Catp(W ) and

∑
v∈W

∣∣∣M(v)
e,cp

∣∣∣ = pr. We showed that our
maximal distinguished subwords are truly noncrossing by giving a natural uniform
bijection betweenMe,cp(W ) and noncrossing partitions for p = mh+1 [1, 39], and
between

⋃
v∈W
M(v)

e,cp and Armstrong, Reiner, and Rhoades’s noncrossing parking

functions for p = h + 1 [5]. In particular, our results give the first uniform proof
that the number of clusters in a finite-type cluster algebra is counted by Cat(W ) [17,
Theorem 1.9].

Problem 4.3. Develop graphical models for our rational noncrossing Catalan
and parking objects (generalizing the usual depictions of noncrossing partitions in
classical types).

One possible approach in the symmetric group would be to attempt to match
Me,cp(W ) up with existing models for rational noncrossing partitions [3, 10].

Beyond the maximal distinguished subwords, enumerative results are lacking
(and the non-maximal distinguished subwords do not appear to be closely linked to
the h- or f -vector of the associahedron). Preliminary calculations in type A suggest
that these lower order terms have a deeper, perhaps not unexpected, connection
to maps—just as there are the same number of maximal distinguished subwords
and rooted bicolored unicellular maps of genus 0 on n edges, there appear to be
the same number of distinguished subwords with r + 2 skips as rooted bicolored
unicellular maps of genus 1 on n+ 2 edges (given by (2n+3)!

6n!(n+1)! ).

4.4. Problem: Rational Nonnesting Catalan Combinatorics. W -Catalan
numbers naturally appear in a markedly different context—in the study of affine
Weyl groups and affine Springer fibers. Specializing to crystallographic Coxeter
groups, for p coprime to h, Catp(W ) (uniformly) counts the number of coroot
points inside a p-fold dilation of the fundamental alcove in the corresponding affine
Weyl group [26, 41]. For p = h + 1, these coroot points are called nonnesting
partitions, and are in bijection with order ideals in the root poset (or, equivalently,
ad-nilpotent ideals in a Borel subalgebra of the corresponding complex simple Lie
algebra). Rational (nonnesting) parking functions are the pn alcoves inside this
same dilation of the fundamental alcove.

Although nonnesting and noncrossing partitions have many similarities, finding
a uniform bijection between the two sets has been an active and motivating area
of research since the late 1990s [37, 7]. The state of the art has now changed with
our recent new definition of rational noncrossing objects—both noncrossing and
nonnesting objects are finally defined at almost the same level of generality: both
are defined for Weyl groups and for any p coprime to h.



COMBINATORICS AND BRAID VARIETIES 7

Problem 4.4. Let p be coprime to the Coxeter number h.
• Find a bijection betweenMe,cp and rational nonnesting partitions.
• Find a bijection between

⋃
v∈W
M(v)

e,cp and rational nonnesting parking func-

tions.

In [44] and for p = h + 1, we conjectured exactly such a bijection between
nonnesting and noncrossing objects for any Coxeter element and any finite Weyl
group, suggesting that the root poset encodes a remarkable amount of information
related to the corresponding Weyl group (compare with the duality between the
heights of roots and the degrees). Our conjectural bijection between noncrossing
and nonnesting objects comes from mimicking walks on the W -associahedron—
drawing inspiration from [36, 9, 6], our methods produce remarkable conjectural
(compatible) bijections from nonnesting partitions to clusters and noncrossing par-
titions which have been exhaustively checked up to rank eight [44, 45, 40].

Problem 4.5. Show the conjectured maps in [44, 45] are bijections between
nonnesting and noncrossing partitions. Use the new definition of rational noncross-
ing objects from [20] to extend them to the Fuss and rational levels of generality.

With a group at LaCIM consisting of Dequêne, Frieden, Iraci, Schreier-Aigner,
and Thomas, we have recently made substantial progress on this problem, proving
part of the conjectures by purely combinatorial means in type A, for all Coxeter
elements [15]. The innovation is that we are able to find an element that realizes
the Cambrian recurrence on nonnesting partitions—a similar approach might work
for other types.

4.5. Problem: Periodic elements. While Equation (4.1) enables brute-
force computations of any traces for finite Coxeter groups, there are also more
powerful specific tools available for sufficiently nice words w (a special case of which
was used in Section 4.3.

We say that a braid w = s1 · · · s`(w) ∈ B+(W ) is periodic if wm = w2p
◦ for some

p,m with m 6= 0. There a classification of periodic braids up to conjugacy using
Springer theory as the dth roots of the full twist, where d is a regular number of
W [8, 31, 21]: in type A we have only (conjugates of) c = s1 · · · sn and (s1 · · · sn)s1;
in type D we have c = s1 · · · sn and (s1 · · · sn−2)sn−1(s1 · · · sn−2)sn.

Problem 4.6. Find formulas for |Re,wp(Fq)| for powers of periodic elements
wp. Extend to formulas for

∑
v∈W

∣∣∣R(v)
e,wp(Fq)

∣∣∣.
Small computations suggest that there should be a uniform formula, generaliz-

ing the usual Coxeter–Catalan numbers, using the regular number d, the eigenvalues
of the periodic element, and a subset of the degrees—such a formula should imme-
diately follow after tracing through the method outlined below, taking advantage
of formulas for character values of periodic elements. The extension to the sum
should be straightforward using Theorem 4.1.

Example 4.7. For type D4 with d = 4 and w = s1s2s3s1s2s4, we have that∣∣Re,w3(Fq)
∣∣ = q−18(q − 1)4(1 + q2 + 3q4 + 4q6 + 4q8 + 3q10 + q12 + q14), and∑

v∈W

∣∣∣R(v)
e,w3(Fq)

∣∣∣ = q−18(q − 1)4(1 + q + q2)4(1 + 4q3 + q6).



8 N. WILLIAMS

At q = 1 and for p odd, we appear to have limq→1(q−1)−4 |Re,wp(Fq)| = ((p+1)(p+3))2

32 ;
note that the order d of w is 4, and that the eigenvalues of w = s1s2s3s1s2s4 in the
reflection representation are i1 and i3 (each with multiplicity 2).

Problem 4.8. Develop graphical models for the maximal distinguished sub-
wordsMe,wp (generalizing the usual depictions of noncrossing partitions in classical
types).

4.6. Technique: Periodic elements. There is a concrete, systematic, and
uniform approach to Problem 4.6, building on [20]. For all χ ∈ Irr(W ), the fake
and generic degrees of χ are

Fegχ(q) :=
(χ, [S]q)W
(1, [S]q)W

and Degχ(q) :=
s+(1q)

s+(χq)
.

It turns out that Fegχ(q) ∈ Z[q] and Degχ ∈ QW [q]; at q = 1, both polynomials
specialize to the degree of χ. For W a finite Coxeter group and χ ∈ Irr(W ) an irre-
ducible character, write c(χ) = 1

dim(χ)

∑
t∈T χ(t) for the content of χ [42]. (When

W = Sn+1 is the symmetric group and the irreducible characters are indexed by
integer partitions, this agrees with the usual definition of content (as the sum of
the contents of all boxes in the partition.) Then we have the following result on
traces of periodic elements [42]: if χ ∈ Irr(W ) and w is a periodic braid of slope
ν ∈ Q, write σw = q−`(w)/2Tw. Then χq(σw) = qν c(χ)Fegχ(e2πiν) so that

τ(σw) =
ε(w)

s+(1q)

∑
χ∈Irr(W )

q−ν c(χ)Fegχ(e2πiν)Degχ(q)

=
ε(w)

s+(1q)

∑
χ∈Irr(W )

q−ν c(χ)Fegχ(q)Degχ(e2πiν),

where the second equality follows from Lusztig’s exotic Fourier transform. This
last formula gives a dramatic simplification of the trace—even though periodic
elements often have many vanishing characters, transferring the root of unity from
the generic degree to the fake degree typically gives a dramatic reduction in the
number of terms vanishing in the sum.

It follows from the above (see also [42, Theorem 9.2.1] and Theorem 4.1) that∑
v∈W

∣∣∣R(v)
e,w2
◦
(F)
∣∣∣ =

∑
χ∈Irr(W )

dim(χ)2qcont(χ).

More generally, writing ord(w) for the order of an element w ∈W , the expres-
sion

∑
v∈W

∣∣∣R(v)

e,word(w)(F)
∣∣∣ appears to have positive coefficients.

4.7. Problem: Complex reflection groups. In this section we propose an
interesting extension of the results in [20] to spetsial complex reflection groups
(that is, G(d, 1, r), G(d, d, r), G4, G6, G8, G14, G23, G24, G25, G26, G27, G28, G29,
G30, G32, G33, G34, G35, G36, or G37). Spetsial complex reflection groups still
have a preferred set of “simple reflections”, Coxeter elements, and a well-defined
rational Catalan number [22]. Moreover, the notion of periodic elements naturally
generalizes to well-generated complex reflection groups, and such elements have
been classified. We may therefore consider Problem 4.6 in this context.
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The first step in this direction is to (subject to certain assumptions common
in the field) compute the trace τ(T pc ) in the Hecke algebra of the well-generated
complex reflection group [11, 12] (whose braid groups have Artin-like presentations,
by Bessis); many of the favorable representation-theoretic properties of Coxeter
elements that we used in Section 4.3 still carry over to the complex setting [11].
While we no longer have Lusztig’s exotic Fourier transformation uniformly or a
uniform definition of the Hecke algebra, Trinh has pointed out that there are partial
results due to Lasy and Lacabanne in the infinite family [30, 28], and a reciprocity
result due to Malle that has been used by Douvropoulos in a related setting [16].
In any event, the computation can be carried out case-by-case using Schur elements
and the corresponding decomposition of the Hecke algebra.

Conjecture 4.9. Let W be a spetsial complex reflection group. Then (up to
a power of q) we have

τ(T pc ) = (q − 1)r
r∏
i=1

[p+ ei(V
p)]

[di]
,

where the ei(V p) are the fake degrees of the p-th Galois twist of the reflection rep-
resentation and the trace is taken in the Hecke algebra HW .

As part of his undergraduate honors thesis, Weston Miller has confirmed Con-
jecture 4.9 on all exceptional spetsial complex reflection groups; moreover, Conjec-
ture 4.9 is false for non-spetsial well-generated groups.

Example 4.10. The complex reflection group G4 has rank r = 2, Coxeter
number h = 6. Its reflection representation has fake degrees 3 and 5. We computed
using GAP3 that

τ(T 7
c ) = (q − 1)2(q12 + q8 + q6 + q4 + 1) = (q − 1)2 [7 + 3][7 + 5]

[4][6]
.

The Deodhar decomposition allows us to build combinatorial models of braid
varieties for general Coxeter groups. Besides the representation-theoretic compu-
tation above, there is the issue of finding the correct combinatorial definition of
distinguished subwords for complex reflection groups.

Problem 4.11. Find a combinatorial description of the Deodhar decomposition
for well-generated complex reflection groups.

5. Techniques, Examples, and Problems in Affine Weyl Groups

In this section we work with affine Weyl groups W̃ .

5.1. Technique: Opdam’s trace formula. Write Φ+ for the positive roots
of a simple Lie group, Q =

⊕r
i=1 Zαi for the root lattice, Q+ ⊂ Q for the positive

span of the simple roots, and Λ for the weight lattice. Given λ ∈ Q+, we express λ
in the basis of fundamental weights as λ =

∑n−1
i=1 aiλi and define λ+ =

∑
i:ai>0 aiλi

and λ− = −
∑
i:ai<0 aiλi. For x ∈ Λ, we write tx for the translation in the extended

affine Weyl group Ŵ .

Definition 5.1. A Kostant partition (aα)α∈Φ+ for λ ∈ Q+ is a sequence of
nonnegative integers indexed by positive roots such that λ =

∑
α∈Φ+ aαα. We

denote the set of all Kostant partitions for λ by K(λ).
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Opdam proved the following trace formula, which—when combined with The-
orem 3.3—is our main technique in this setting.

Theorem 5.2 ([35, Cor. 1.18]). Let [k]q = (q−1)2

q
qk−q−k
q−q−1 . For λ ∈ Q+,

τ(Ttλ−
T−1
tλ+

) = q(`(tλ− )−`(tλ+ ))/2
∑

(aα)∈K(λ)

∏
α∈Φ+

aα>0

[aα]q.

5.2. Example: Haglund’s formula and Tesler matrices. The results in
this section were obtained in collaboration with Galashin and Lam. Let Sn act
diagonally on the polynomial ring C[x1, . . . , xn, y1, . . . , yn], and write Qn for its
root lattice, Λn for its fundamental weights, and Φ+

n for its positive roots. The
quotient ring of diagonal coinvariants DHn is the quotient of this polynomial ring
by the ideal generated by the invariants with no constant term; there is a more
general Sn module DHm

n depending on an integral parameter m. In [24], Haglund
proved a remarkable formula for the bigraded (in x- and y-degree) Hilbert series
of DHm

n . Haglund stated the formula in terms of Tesler matrices, which are a
simple combinatorial rephrasing of Kostant partitions. We choose to write the
formula using Kostant partitions to mirror Theorem 5.2—note that since there are
only n − 1 simple roots in Φ+

n , the formula for DHm
n−1 is written using Kostant

partitions in Q+
n .

Theorem 5.3 ([24, Corollary 1 and Theorem 3]). Write [k]q,t = (q − 1)(1 −
t) q

k−tk
q−t and let λ = (m(n− 1) + 1)λn−1 − (m− 1)λ1 ∈ Q+

n . Then

Hilb(DHm
n−1; q, t) =

(
1

(q − 1)(t− 1)

)n−1 ∑
(aα)∈K(λ)

∏
α∈Φ+

n
aα>0

[aα]q,t.

Let Sn be the symmetric group of order n!. The Weyl group of GLn(F) is
the group of extended affine permutations Ŝn = Λn n Sn ' NGLn(F)(T̂ )/T̂ , whose
elements can be thought of as bijections ŵ : Z→ Z such that ŵ(i+ n) = ŵ(i) + n
and

∑n
i=1 ŵ(i) =

(
n+1

2

)
modn. Given λ ∈ Q+

n , we express λ in the basis Λn

as λ =
∑n−1
i=1 aiλi and define λ+ =

∑
i:ai>0 aiλi and λ− = −

∑
i:ai<0 aiλi. For

x ∈ Λn, we write tx for the corresponding translation element of Ŝn.

Example 5.4. The element λ = α1 +3α2 +5α3 ∈ Q+
4 has ten possible Kostant

partitions, partially ordered in Figure 1 according to the PBW basis terms appear-
ing in the corresponding element of the canonical basis in the positive part of the
quantum group U+

q (sl4) (for the ordering α1 < α12 < α123 < α2 < α23 < α3; it
would be interesting to study this partial ordering in more detail; see also [4, 34]).
Since λ = −λ1 + 7λ3, we have λ+ = 7λ3 and λ− = λ1, so that tλ1 = σ · s3s2s1 and
t7λ3

= (σ3 · s1s2s3)7.

Example 5.5. As in Example 5.4 and Figure 1, λ = −λ1 +7λ3 has ten Kostant
partitions, while `(tλ1) = 3 and `(t7λ3) = 21. Taking the weighted sum over K(λ),
we have tr(Ttλ−

T−1
tλ+

) =
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1 3 5
0 0

0

0 2 5
1 0

0

1 2 4
0 1

0

0 1 4
1 1

0

1 1 3
0 2

0

0 2 4
0 0

1

0 0 3
1 2

0

0 1 3
0 1

1

1 0 2
0 3

0

0 0 2
0 2

1

Figure 1. The set of Kostant partitions K(α1 + 3α2 + 5α3) ∈
Q+

4 , partially ordered using the canonical basis of the quantum
group U+

q (sl4). Coefficients are arranged by dominance ordering
on positive roots.

q(3−21)/2
(
[1]q[3]q[5]q + [1]q[2]q[1]q[4]q + [1]q[1]q[2]q[3]q + [1]q[3]q[2]q + [1]q[2]q[5]q+

+ [1]q[1]q[1]q[4]q + [1]q[2]q[3]q + [2]q[1]q[4]q + [1]q[1]q[1]q[3]q + [1]q[2]q[2]q
)

= q−18(q6 + q5 + q4 + q3 + q2 + q + 1)2(q − 1)6

Since [k]q = [k]q,q−1 , we can specialize Theorem 5.3 using a result of Haiman
to conclude the following.

Theorem 5.6. Fix the extended affine Weyl group Ŝn, and let v = t(m−1)λ1

and w = t(m(n−1)+1)λn−1
. Then

|Rv,w(F)| = (q − 1)2(n−1)Hilb(DHm
n−1; q, q−1).

Proof. By [27, Lemmas A3 and A4] and [20, Corollary 5.3], the number of Fq-
points in the braid varietyRṽ,w̃(F) is given by the trace formula q`(w̃)−`(ṽ)tr(Tṽ T

−1
w̃ ).
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Since v̂ = t(m−1)λ1
and ŵ = t(m(n−1)+1)λn , we see that

v̂ = (σsn−1 · · · s2s1)m−1 = ṽσm−1 and

ŵ = (σ−1s1 · · · sn−2sn−1)m(n−1)+1 = w̃σ−m(n−1)−1 = w̃σ−mn+(m−1) = w̃σm−1,

so that Tv̂ = TṽTσm−1 and T−1
w̃ = T−1

σm−1T
−1
w̃ . We conclude that tr(Tv̂ Tŵ−1) =

tr(Tṽ Tw̃−1), so that tr(Tṽ Tw̃−1) is given by Opdam’s Theorem 5.2. We conclude
the result by Haglund’s Theorem 5.3. �

Example 5.7. The 16 maximal Deodhar words for S̃4 and Me,(s0s1s2s3)3 are
given in Figure 2; the word (s0s1s2s3)3 is drawn on three lines, and the letters
appearing in a subword are highlighted in gray.

Problem 5.8.
• Find a bijection betweenMe,tnλn−1

in S̃n and (noncrossing or nonnesting)
parking functions for Sn−1.

• Extend toMt(m−1)λ1
,t(m(n−1)+1)λn−1

and Fuss parking functions.

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3

Figure 2. The 16 maximal distinguished subwords for S̃4 and
Me,(s0s1s2s3)3 ; the letters appearing in a subword are highlighted
in gray.

It appears that nice enumerations extend to other fundamental weights beyond
λn−1. It should be possible evaluate the sum over the Kostant partitions using
inductive methods similar to those Haglund used to establish Theorem 5.3.

5.3. Problems: affine Weyl groups. Galashin has pointed out that there
is a similar formula due to Gorsky and Negut [23], which appears as [25, Theorem
32]—this formula sums over the same set of Kostant partitions and outputs the
same q, t-polynomial, but extends to the rational case. We propose an extension
of Theorem 4.1 to rational parking functions.

Conjecture 5.9. Let n and m be relatively prime, and define the element

cnm = (sm−n+1sm−n+2 · · · sm−1s0sm−nsm−n−1 · · · s1)n ∈ S̃m.
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Then
|Re,cnm(F)| = (q − 1)n+m−1[m]n−1.

This agrees with the computatations in Section 5.2 for (n,m) = (n, n + 1),
since it is easily seen that wn,n+1 produces a braid variety isomorphic to the one
given by tnλn−1 . We have confirmed Conjecture 5.9 by computer for (n,m) ∈
{(3, 5), (3, 8), (4, 7), (5, 7)}; note that Opdam’s formula does not apply because we
don’t get cancellation of the non-translation elements in this more general case.
One can again ask for bijections betweenMe,cnm and rational parking functions.

The following conjecture is a restatement of a conjecture of Armstrong, Gar-
sia, Haglund, Rhoades, and Sagan in the language of Kostant partitions and our
framework, and would generalize Theorem 4.1.

Conjecture 5.10 ([2, Conjecture 7.1]). Fix W̃ = S̃n. Let λ ∈ Q+ satisfy
λ =

∑n−1
i=1 aiαi = tλ+

− tλ− with a1 > a2 > · · · > an−1 ≥ an = 0. Then∣∣∣Rtλ− ,tλ+ (F)
∣∣∣ = q(`(tλ+ )−`(tλ− ))/2(q − 1)2n

n−1∏
i=1

[(i+ 1)ai − iai+1].

While we can express the left-hand side of the conjecture as a sum of Kostant
partitions, the form of the right-hand side strongly suggests that there is another
decomposition of the variety available. It would be interesting to try to extend
the previous conjecture to other affine Weyl groups, and other affine Weyl group
elements other than translations.

Write fµ for the number of standard Young tableaux of shape µ.

Conjecture 5.11. Fix W̃ = S̃2n and take 2λn ∈ Q+. Then∣∣R1,t2λn
(F)
∣∣ =

∑
(aα)∈K(2λn)

∏
α∈Φ+

aα>0

[aα]q =
∑
µ`n

f2
µq

2(c(µ)+(n2)).

We have confirmed Conjecture 5.11 up to n = 5. To use Opdam’s formula, we
need to compute the sum overK(2λn)—the size of |K(2λn)| starts 1, 5, 86, 4274, 550919, . . .,
and does not appear in the OEIS.

Example 5.12. The six maximal Deodhar words for S̃5 and Me,2tλ3
are il-

lustrated in Figure 3. A reduced word for 2tλ3
is [s0, s1, s2, s5, s0, s1, s4, s5, s0,

s3, s4, s5, s2, s3, s4, s1, s2, s3], which we have split into two 3 × 3 squares—the left
square containing the first nine letters and the right square containing the remain-
ing nine letters. If one interprets the shaded letters as ‘0’ and the unshaded letters
as ‘1’, then each pair of 3 × 3 squares appears to be the permutation matrix of a
permutation, along with the permutation matrix of its inverse.

More generally, one could consider the same problem for maλb ∈ Q+ in type
S̃ab.

Conjecture 5.13. Fix W̃ to be the affine Weyl group of type Cn and w =
(s0s1 · · · sn)2k+1. Then there exists a statistic stat on the set of lattice points Lk,n =
{(x1, . . . , xn) ∈ Zn : |x1|+ · · ·+ |xn| ≤ k} such that

± |Re,w(Fq)|q 7→−q = (q + 1)
n+1

∑
(x1,...,xn)∈Lk,n

qstat(x1,...,xn)
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0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3

Figure 3. The six maximal Deodhar words for S̃5 andMe,2tλ3
.

This has been confirmed computationally in some small cases; one can apply
Opdam’s formula to the cases when n|(2k+ 1). By [13], the number of such lattice
points is

∑n
i=0 2i

(
n
n−i
)(
k
i

)
. For fixed n, the generating function for k is given by

(1+q)n

(1−q)n+1 .

6. Techniques and Problems in Kac-Moody groups

In this section, we fix a general Kac–Moody Lie group G and describe general
techniques that apply.

6.1. R-polynomials. Let W be the Weyl group of a Kac-Moody Lie group.
There are two general technique that persist at this level of generality. The first
exploits a recursive structure on the set of distinguished subwords to construct
polynomials that count

∣∣∣R(v)
u,w(Fq)

∣∣∣: setting R(v)
u,∅∅∅(q) := Ru,∅∅∅(q), for any word w and

s ∈ S we have

R(v)
u,ws(q) =

{
R

(v)
us,w(q) if vus < vu

qR
(v)
us,w(q) + (q − 1)R

(v)
u,w(q) if vus > vu.

(6.1)

Theorem 6.1. For arbitrary Weyl groups W , we have R(v)
u,w(q) =

∣∣∣R(v)
u,w(Fq)

∣∣∣.
Braid varieties arising from powers of Coxeter elements are likely varieties of

interest for general W , and serve as analogues of rational noncrossing Catalan
objects for general Coxeter groups.

6.2. Cluster Varieties. Having identified interesting varieties, the second
technique is a cluster-theoretic approach for computing the mixed Hodge decom-
position. For particular choices of u and w, it is possible to put a (locally acyclic)
cluster structure on R(v)

u,w(C). With this cluster structure, we may invoke technology
of Lam and Speyer [29, 33] to recursively compute |R(v)

u,w(Fq)|. This requires finding
an artful sequence of mutations to isolate a separating edge, thereby enabling re-
cursive arguments. This technique succeeds in small examples, but we require more
systematic approaches using the specific properties of the quivers corresponding to
the braid varieties of interest to handle large cases.
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7. Cohomology and Mixed Hodge Structures

This section is speculative. Working over C now (rather than F), we have the
Deligne splitting of cohomology

Hk(R(v)
u,w(C)) =

k⊕
p=0

k⊕
q=0

Hk,(p,q)(R(v)
u,w(C)).

Other than the long exact sequence for relative cohomology, we have only one
tool. For particular choices of u and w—even, for example, in affine type—it is
possible to put a (locally acyclic) cluster structure on R(v)

u,w(C), from which we may
conclude that Hk,(p,q)(R

(v)
u,w(C)) = 0 for p 6= q. With this cluster structure, we may

invoke technology of Lam and Speyer [38], building on work of Muller [33]. As
in the previous section, the approach is to find an artful sequence of mutations to
isolate a separating edge. Following [18], when R(v)

u,w(C) has dimension d we define
the mixed Hodge polynomial

P(R(v)
u,w(C); q, t) :=

∑
k,p∈Z

qp−k/2t(d−k)/2dim(Hk,(p,p)(R(v)
u,w(C))).

Problem 7.1. Compute the mixed Hodge polynomial P(R
(v)
u,w(C)) in all cases

where the point count |R(v)
u,w(Fq)| has been established.

This is already fascinating in the case of the Coxeter–Catalan varieties Re,cp
and the parking varieties

⋃
v∈W R

(v)
e,cp—here, the mixed Hodge polynomials should

compute the rational (W, q, t)-analogues of Catalan numbers and parking func-
tions [22].

Example 7.2. For W = S3 and w = (s1, s2, s1, s2, s1, s2, s1, s2), we have six
varieties in

⊔
v∈W

R
(v)
e,cp (one for each element v of W ). Using the tables from [29],

Lam has confirmed that as cluster varieties, they are of type E6, A4 (twice), A2

(twice), and A0, giving the sum

(q3 + q2t+ qt+ tq2 + t3) + 2(q2 + qt+ t2) + 2(q + t) + 1,

which is the usual parking q, t-analogue of 42.

Problem 7.3. Find combinatorial statistics statq, statt on all distinguished
subwords D(v)

u,w so that

P(R(v)
u,w(C)) =

∑
u∈D(v)

u,w

[(q − 1)(t− 1)]eu /2qstatq(u)tstatt(u).

When P(R
(v)
u,w(C)) is a positive q, t-polynomial, find combinatorial statistics stat′q, stat′t

on all maximal distinguished subwordsM(v)
u,w so that

P(R(v)
u,w(C)) =

∑
u∈M(v)

u,w

qstat′q(u)tstat′t(u).
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